Definition and Properties of the Libera Operator on Mixed Norm Spaces

نویسنده

  • Miroslav Pavlovic
چکیده

We consider the action of the operator ℒg(z) = (1 - z)(-1)∫ z (1)‍f(ζ)dζ on a class of "mixed norm" spaces of analytic functions on the unit disk, X = H α,ν (p,q) , defined by the requirement g ∈ X ⇔ r ↦ (1 - r) (α) M p (r, g ((ν))) ∈ L (q) ([0,1], dr/(1 - r)), where 1 ≤ p ≤ ∞, 0 < q ≤ ∞, α > 0, and ν is a nonnegative integer. This class contains Besov spaces, weighted Bergman spaces, Dirichlet type spaces, Hardy-Sobolev spaces, and so forth. The expression ℒg need not be defined for g analytic in the unit disk, even for g ∈ X. A sufficient, but not necessary, condition is that Σ(n=0)|(∞)|ĝ(n)/(n + 1) < ∞. We identify the indices p, q, α, and ν for which 1°ℒ is well defined on X, 2 °ℒ acts from X to X, 3° the implication g ∈ X [Symbol: see text] Σ(n = 0)(∞) |/ĝ(n)|(n+1) < ∞ holds. Assertion 2° extends some known results, due to Siskakis and others, and contains some new ones. As an application of 3° we have a generalization of Bernstein's theorem on absolute convergence of power series that belong to a Hölder class.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Libera operator on Dirichlet spaces

In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.

متن کامل

Some Properties of Fuzzy Norm of Linear Operators

In the present paper, we study some properties of fuzzy norm of linear operators. At first the bounded inverse theorem on fuzzy normed linear spaces is investigated. Then, we prove Hahn Banach theorem, uniform boundedness theorem and closed graph theorem on fuzzy normed linear spaces. Finally the set of all compact operators on these spaces is studied.

متن کامل

SOME PROPERTIES OF FUZZY HILBERT SPACES AND NORM OF OPERATORS

In the present paper we define the notion of fuzzy inner productand study the properties of the corresponding fuzzy norm. In particular, it isshown that the Cauchy-Schwarz inequality holds. Moreover, it is proved thatevery such fuzzy inner product space can be imbedded in a complete one andthat every subspace of a fuzzy Hilbert space has a complementary subspace.Finally, the notions of fuzzy bo...

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014